import pandas
from sklearn import tree
import pydotplus
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import matplotlib.image as pltimg
df = pandas.read_csv("shows.csv")
d = {'UK': 0, 'USA': 1, 'N': 2}
df['Nationality'] = df['Nationality'].map(d)
d = {'YES': 1, 'NO': 0}
df['Go'] = df['Go'].map(d)
features = ['Age', 'Experience', 'Rank', 'Nationality']
X = df[features]
y = df['Go']
print(X)
print(y)
Age Experience Rank Nationality 0 36 10 9 0 1 42 12 4 1 2 23 4 6 2 3 52 4 4 1 4 43 21 8 1 5 44 14 5 0 6 66 3 7 2 7 35 14 9 0 8 52 13 7 2 9 35 5 9 2 10 24 3 5 1 11 18 3 7 0 12 45 9 9 0 0 0 1 0 2 0 3 0 4 1 5 0 6 1 7 1 8 1 9 1 10 0 11 1 12 1 Name: Go, dtype: int64